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ABSTRACT

This thesis concerns the decentralized formation shape control of a set of ho-

mogeneous agents in the plane whose actuation dynamics are nonlinear and passive.

The formation shape is specified by a subset of interagent distances. The formation

is modeled as an undirected graph, with vertices representing the agents. An edge

exists between two vertices if the specification provides the distance between them.

Enough distances are assumed to have been specified to make the underlying graph

rigid. Each agent executes its control law by measuring its relative positions from

its neighbor and by knowing its absolute velocity. The control law is the same as

previously proposed for a network where the agents have linear time invariant (LTI)

passive dynamics. Despite the nonlinearity we show local convergence of this same

law. The stability proof is in fact simpler than given in the LTI case through a re-

definition of the state space. The results are verified by simulations, which show that

the control law can indeed stabilize under wider ranges of dynamics than previously

perceived.

ii
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PUBLIC ABSTRACT

This thesis concerns multiple individual entities called agents working together

in a multiagent system to create formation shapes using relative distances amongst

each other. In modeling the agents, the relationship between the input and the output

of the system is nonlinear and passive. It is required for the formation to be rigid,

meaning the relative distances among all agents are constant for all continuous mo-

tions in which certain specified distances between some agents are unchanged. Each

agent is responsible for achieving and maintaining the formation shape by measuring

its relative positions from its neighbors and by knowing its absolute velocity. The

control law to do so is the same as previously proposed for a network where the agents

have an input to output relationship that is linear time invariant (LTI) passive. De-

spite the nonlinearity we show local convergence of this same law. The stability proof

is in fact simpler than given in the LTI case through a redefinition of the state space.

The results are verified by simulations, which show that the control law can indeed

stabilize under wider ranges of dynamics than previously perceived.

iii
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CHAPTER 1
INTRODUCTION

This thesis considers the distributed control of rigid formations for agents

whose actuation to velocity dynamics are passive but nonlinear. In the sequel, we

will say that such agents have passive, nonlinear dynamics. In doing so we extend the

work of [1] that considers the same problem with linear time invariant (LTI) passive

dynamics.

1.1 Motivation and Applications

Recent years have witnessed intense activity in the distributed control of mul-

tiagent systems, where groups of agents organize to perform tasks with limited cen-

tralized intervention and mutual exchange of information. This area of research is

currently motivated by applications such as, but not limited to, high resolution imag-

ing from space, coordinated search and rescue missions, and optimization of sensor

networks, [16], [45].

The modern incarnation of multiagent systems, [1]-[37], was initially for achiev-

ing consensus, where all agents talk to their neighbors to achieve a common state.

These literatures also include gossip algorithms, collision avoidances, and formation

shape controls. What sets the literature on multiagent control apart from traditional

control is the emphasis on the communication architecture that defines which agents

share their state information with which other agents. Such an information exchange

architecture is often modeled as a graph. Each agent represents a node. An edge
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exists between agent pairs that exchange information. The edge could be directed,

where only one agent among the pair at the end points receives information from the

other, or undirected if the information exchange is mutual.

The particular emphasis of this thesis is on formation shape control, [18]-[29].

Applications include self organizing sensor networks where particular agent config-

urations are optimal for surveillance and localization tasks. Most of this literature

assumes that formation shape is specified by prescribing a subset of interagent dis-

tances. The resulting formation topology is also modeled as a graph. An edge exists

between two nodes if the distance between them has been specified. If enough such

distances are specified, then as discussed in Chapter 2, the graph is said to be rigid,

[40]. As explained further in Chapter 2, rigid graphs represent shapes that are unique

to within rotations, translations and flip ambiguities. The goal of this body of re-

search is to devise decentralized schemes that achieve this desired formation shape

with information exchange restricted between subsets of pairs of agents. Section 1.2

describes the current state of the art in formation shape control.

1.2 Background and Literature Review

We now review the state of the art on achieving formation shapes specified

by interagent distances. Before doing that we acknowledge other types of formation

specifications such as attitude control [38]. Such papers are beyond the scope of this

review.

There are two types of control laws that have been proposed on formation
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shape control. The first involves laws that have a unidirectional communication

architecture, [18]-[24]. In this class, of the two agents A and B at the end points

of each specified interagent distance, only one (e.g. A) is responsible for achieving

this distance. In the underlying graph representing the formation topology, the edge

corresponding to this distance is directed from A to B. In the communication topolgy

for achieving this control objective, A is permitted to sense B’s position, but not vice

versa. Thus, in these problems, the formation topology is modeled as a directed

graph, and the information exchange topology mirrors this architecture. Much work

in this area was spurred by the work of Bailleul and Suri, [18], who noted that when

the graphs modeling the communication and the formation topologies have cycles,

instabilities may occur due to the intuitive phenomenon of chasing one’s own tail.

The pair of papers [19] and [22] propose control laws that ameliorate instabilities

caused by such cycles. Other related papers that study the effect of and combat

cycles are [20], [21] and [23].

The class of problems of direct interest to this thesis was first formulated in [26].

The setting concerns formation graphs that are undirected, i.e. both agents at the end

points of an edge are responsible for maintaining the distance specified. Additionally,

each agent has a single integrator dynamics, i.e. with pi the two dimensional vector

of position of agent i, and ui its control input, there holds:

ṗi = ui. (1.1)

Further, the desired formation represents a rigid graph. Suppose the formation topol-

ogy is represented by the graph G = (V,E), where V is the set of vertices and E the
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set of edges. The specified distances defining the formation topology are dij for all

edges (i, j) ∈ E between nodes i ∈ V and j ∈ V . Then [26] formulates the obvious

cost function,

J(p) =
∑

(i,j)∈E

(
d2
ij − ‖pi − pj‖

2)2
, (1.2)

where p = [p1, · · · , pn]T , and proposes the gradient descent control law

ṗi = −∂J(p)

∂pi
. (1.3)

The resulting control law is decentralized in that to execute (1.3), the i-th agent

only needs to know its relative position with respect to its neighbors, i.e. the nodes it

shares edges with in E. Using center manifold theory, [42], [26] proves local asymptotic

convergence of pi to a point where the distance requirements are met. It also shows

that in principle (1.3) may have false stationary points, and presents a simulation

that shows apparent convergence to such a false stationary point.

The nature of these false stationary points are investigated at length in [27]-

[29]. In fact [28] shows that the false stationary point example in [26] actually repre-

sents a saddle point of (1.2), i.e. it is locally unstable with respect to (1.3). In other

words, if at all attained, it cannot be sustained. Simulations in [27] verify this fact.

They show for example, that after a false stationary point is fleetingly acquired, the

numerical errors in the Matlab simulation are enough to drive the trajectories off it,

to eventual convergence of a desired formation. For formation topologies represented

by K4 rectangles, [29] shows that all false stationary points of (1.3) are in fact locally

unstable, i.e. (1.3) is in practical terms globally asymptotically stable.
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Moving beyond single integrator dynamics [2] considers double integrator mod-

els i.e. where the control input at the i-th agent, ui, interacts with system through

ṗi = vi, v̇i = ui, (1.4)

vi being the 2-vector of velocities in two dimensions. As attaining the formation

objective also requires velocity consensus among agents, [2] has an added layer of a

velocity consensus algorithm. As a result it requires that each agent sense both its

relative positions and relative velocities with respect to its neighbors. This thesis on

its part is most directly related to [1]. The actuation model of [2] can be viewed as

a special case of that in [1], where the input to velocity relationship is more general

LTI and passive, in other words there are K1 ≥ 0 and K2 such that for all ui(·), initial

conditions and t0 < t, [42]

∫ t

t0

uTi (τ)vi(τ)dτ ≥ K1

∫ t

t0

‖ui(τ)‖2dτ +K2. (1.5)

Physical and mathematical significance of passivity is discussed in Chapter 2. As

an integrator is also passive, the setting of [2] is automatically covered. However,

unlike [2], the control law of Dasgupta and Anderson in [1] does not require agents

to measure their relative velocities with their neighbors. Instead each agent needs its

own absolute velocity.

1.3 Approach and Contribution

This thesis directly extends the work of Dasgupta and Anderson in [1] by

removing the LTI restriction on the ui to vi dynamics, to permit it to be nonlinear
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but still passive. We show that the control law of [1] suffices despite the relaxation

of linearity.

A notable feature of our proof is that it is in fact simpler than what was given

in [1]. Specifically, both proofs invoke Lasalle’s invariance principle, [42]. Among

other things, this requires one to first demonstrate the compactness of the underlying

state space. To that end, the proof in [1] has an intermediate step that demonstrates

initial boundedness of the centroid of the formation. By redefining the state space,

we are able to sidestep this additional step.

We note that passivity based ideas are also found in the context of multi-

agent systems in [30]-[38]. All but [37], however, do not deal with controlling the

shape of formations defined by interagent distances. Arcak in [37] does lay out a

very general framework for the passive control of multiagent systems to meet general

objectives that require the relative positions to converge to specified compact sets.

As such, our objective may be viewed as a special case. However, the design in [37]

requires the selection of certain objective dependent storage functions and memory-

less nonlinearities satisfying a variety of conditions. Finding these storage functions

and memoryless nonlinearities are highly nontrivial. Our control law requires no such

additional design and is vastly simpler.

1.4 Outline of the Thesis

Chapter 2 reviews background material on graph rigidity and passivity. Chap-

ter 3 gives the precise problem formulation, including the system model, actuation
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dynamics, other assumptions that underlie our work, and the control law. Chapter 4

has the stability analysis. Chapter 5 provides simulations. Chapter 6 concludes.
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CHAPTER 2
BACKGROUND ON RIGIDITY AND PASSIVITY

There are two overarching assumptions that underlie the work of this thesis.

First, the formation specification corresponds to a rigid undirected graph. Second, the

actuation dynamics relating the control input of an agent to its velocity is passive.

This chapter explains these concepts and provides some important mathematical

characterizations that are used in later chapters. Section 2.1 describes the graphical

framework used to represent formations. Section 2.2 defines and characterizes rigid

graphs. Section 2.3 explains the notion of passivity.

2.1 Graphical Representation of Formations

We consider an n-agent formation in the plane with the i-th agent having two

dimensional position vector pi = [xi, yi]
T ∈ R2. The agents must organize themselves

into a formation specified by a subset of interagent distances. In the sequel, define

p ∈ R2n as

p = [p>1 , · · · , p>n ]>. (2.1)

The formation will be associated with an undirected graph G = (V,E). We will

call the formation F = (G, p). An edge exists in G between vertices i, j ∈ V whenever

the desired distance dij = ‖pi−pj‖ is provided in the formation specification. The edge

set E also represents the information architecture of the control law to be formulated

here in the sense that, in its decentralized execution, an agent i can access the position

of agent j iff j is its neighbor, i.e. there is an edge in G between the vertices i and
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j. Unlike [2], agents have access only to their own velocities rather than that of their

neighbors. Observe that p : V → R2n is known as a representation of the graph G

in the sense that the vertex i ∈ V has the position pi in the formation F = (G, p).

Figure 2.1 depicts several examples of four agent formations and the underlying

graphs. Thus, in the specifications underlying Figure 2.1a, all six possible distances

are specified; in Figure 2.1b, five are specified; and in Figure 2.1c, only four are

specified.

2.2 Graph Rigidity

An undirected graph G = (V,E) is rigid if the distances among all vertices in G

are constant for all continuous motions in which the distances in E are unchanged. If

the condition also holds for all discontinuous motions, the graph is said to be globally

rigid. Since the formation F embodies the graph G, F is called a rigid formation if

G is rigid.

Thus the graph in Figure 2.1c is not rigid as one can continuously move the

nodes a3 and a4 in a manner that preserves the specified distances d12, d14, d23 and

d34 while changing the distance d13. On the other hand the graph in Figure 2.1b has

the additional distance d13. It is not globally rigid as flipping node a2 to the depicted

position maintains all five distances d12, d14, d23, d13 and d34, but changes the distance

d24. However, this is rigid as a continuous motion since moving a2 to the new position

fails to preserve all the distances d12, d14, d23, d13 and d34. Figure 2.1a on the other

hand is globally rigid.
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a1

a2 a3

a4

(a) a rigid
formation that
is also globally
rigid

a1

a2 a3

a4

a2

(b) a rigid but not
globally rigid for-
mation

a1

a2 a3

a4

a3

a4

(c) a non-rigid
formation

Figure 2.1: Three formations with identical node locations. One shows global rigidity;

whereas another shows the edge lengths preserved through a discontinuous motion

ambiguity (i.e. local but not globally rigid); and a third formation shows all specified

edge lengths preserved with continuous motion ambiguity.

Figure 2.1b is in fact also minimally rigid as removing any of the five specified

edges removes rigidity. Observe with n = 4, 2n − 3 = 5 the number of edges in this

minimally rigid graph. Indeed it has been known since the days of Maxwell that a

necessary condition for an n-node graph to be rigid is that it has at least 2n−3 edges.

This is however not a sufficient condition. Consider for example the five vertex graph

in Figure 2.2, which does have 2×5−3 = 7 edges. The problem is that 6 of these edges

are incident at only four nodes between them. In fact, rigidity requires that there

be at least 2n− 3 well distributed edges. A characterization of “well distributed” has

been provided relatively recently by the celebrated Laman’s theorem. This theorem

refers to an induced subgraph that is defined as follows: Consider G = (V,E) and
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Figure 2.2: Example of a graph with 2n− 3 edges that is not rigid.

V ′ ⊂ V . Then the subgraph induced by V ′ is obtained by removing the vertices in

V \ V ′ and the edges incident on any of these vertices. Thus the graph in Figure 2.3

is an induced subgraph of the graph in Figure 2.2.

Laman’s Theorem: Almost all representations of a graph G = (V,E) is rigid iff

there is an edge set E1 ⊂ E such that G = (V,E1) is minimally rigid, i.e. |E1| =

2|V | − 3 and for all V ′ ⊂ V , the subgraph induced by V ′ has no more than 2|V ′| − 3

edges.

More pertinent to our purposes, an n-node graph is rigid iff its rigidity ma-

trix R(p) has rank 2n − 3 for almost all representations. The rigidity matrix of

the representation F (G, p) for an n-node graph G = (V,E) is defined as follows:

R(p) : p→ R‖E‖×2n has one row for every edge in G. If the edge is between vertices i
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Figure 2.3: An induced subgraph of the graph in Figure 2.2.

and j, then the corresponding row has (pi − pj)T and (pj − pi)T in the 2i− 1, 2i and

2j − 1, 2j locations, respectively. The remaining elements of the row are zero. The

rigidity matrix from Figure 2.1a, which is used for simulation in chapter 6, can be

written as follows:
(p1 − p2)> (p2 − p1)> 0 0
(p1 − p3)> 0 (p3 − p1)> 0
(p1 − p4)> 0 0 (p4 − p1)>

0 (p2 − p3)> (p3 − p2)> 0
0 (p2 − p4)> 0 (p4 − p2)>

0 0 (p3 − p4)> (p4 − p3)>


Finally, a graph is minimally rigid if it is rigid and has precisely 2n− 3 edges.

2.3 Passivity

We now turn to the notion of passivity. Consider a system with an input vector

u(·) and output vector y(·) with the same dimensions. Then the system is passive if
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there exists a K1 ≥ 0 and K2 such that for all u(·), and initial time t0, there holds

∫ t

t0

yT (τ)u(τ)dτ ≥ K1

∫ t

t0

‖u(τ)‖2dτ +K2, (2.2)

where K2 may depend on initial conditions but K1 may not. In systems theory, this

notion of passivity has its origins in passive circuits. In a multi-port passive circuit,

suppose the elements of u and y are matching port voltages and currents, then with

K2 = 0, the non-negativity of K1 and (2.2) together reflect the fact that the circuit

cannot generate power. Nonzero K2 helps capture initial condition effects. Many

mechanical systems, like those with masses, springs, and dashpots modeling viscous

friction, are also passive with elements of u being forces acting on masses and the

corresponding elements of y as the displacements of those masses.

An LTI system with transfer function matrix G(·) : C → Cm×m is passive iff

it is Positive Real (PR), i.e. it satisfies the following properties:

• G(s) is analytic for Re[s] > 0.

• It is real for positive real s.

• For all Re[s] ≥ 0

GH(s) +G(s) ≥ 0

i.e. G(s) is positive semidefinite.

Observe, all admittance and impedance matrices of m-port passive circuits are PR.

The celebrated Kalman-Yakubovic-Popov (KYP) Lemma, [44], [43] characterizes PR

in terms of properties of the state variable realization (SVR) of PR. Specifically,

suppose with x : R→ RN , A ∈ RN×N , B ∈ RN×N , C ∈ Rm×N and D ∈ Rm×m, G(s)
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has the SVR

ẋ(t) = Ax(t) +Bu(t) (2.3)

y(t) = Cx(t) +Du(t). (2.4)

The the KYP lemma asserts that G(s) is PR iff there exists a positive definite sym-

metric P and a matrices Qi such that:[
AT −CT

BT −DT

] [
P 0
0 I

]
+

[
P 0
0 I

] [
A B
−C −D

]
= −

[
Q1

Q2

] [
QT

1 QT
2

]
. (2.5)

In other words, there obtains

ATP + PA = −Q1Q
T
1 (2.6)

PB − CT = −Q1Q
T
2 (2.7)

D +DT = Q2Q
T
2 . (2.8)

Then as P = P T , from (2.6-2.8) we get

2xTPẋ− 2uTy = xTPẋ+ ẋTPx− 2uTy

= xT (PAx+ PBu) + (PAx+ PBu)T x− 2uTy

= xT (PA+ ATP )x+ 2xTPBu− 2yTu

= −xTQ1Q
T
1 x+ 2

(
xTPB − xTCT

)
u− uT (D +DT )u

= −xTQ1Q
T
1 x− 2xTQ1Q

T
2 u− uTQ2Q

T
2 u

= −xTQ1Q
T
1 x− xTQ1Q

T
2 u− uTQ2Q

T
1 x− uTQ2Q

T
2 u

= −
∥∥QT

1 x+QT
2 u
∥∥2

≤ 0.
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It turns out that this last inequality is enough to prove (2.2). In particular

consider the positive definite storage function

S(x) = xTPx. (2.9)

Observe that

Ṡ(x) = xTPẋ+ ẋTPx

= 2xTPẋ

≤ 2uTy (2.10)

Consequently, as S(x) ≥ 0 for all x,∫ t

t0

uT (τ)y(τ)dτ ≥ S(x(t))− S(x(t0))

2

≥ −S(x(t0))

2
,

i.e. (2.2) holds with K1 = 0 and K2 = −S(x(t0))
2

.

What about nonlinear passive systems? From the seminal work of Hill and

Moylan, [39] provides a comparable characterization: That a nonlinear system

ẋ = f(x, u); y = h(x, u) (2.11)

is passive if there exists a positive definite storage function S(x) such that (2.10)

holds. Indeed, when we talk of nonlinear passive systems in subsequent chapters, we

will assume that each has such a storage function whose derivative is upper bounded

by the inner product of the input and output vectors. Whereas this storage function

is quadratic in the state for LTI passive systems, it need not be so for nonlinear

systems.
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2.4 Conclusion

As groundwork for future chapters, in this chapter, we have provided a review

of graph rigidity and nonlinear system passivity. These concepts are crucial to this

thesis. The formations we will seek to attain will be rigid. The actuation dynamics

of the agents will be possibly nonlinear but passive.
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CHAPTER 3
PROBLEM FORMULATION AND THE CONTROL LAW

This chapter provides the precise problem formulation and the distributed

control law that meets the control objective. As noted in earlier chapters, our over-

arching goal is to formulate a distributed control law that induces a collection of

n agents to organize themselves into a specified rigid formation, with information

exchange limited to that between nearest neighbors. Like [1] the control input to ve-

locity dynamics, known henceforth as actuation dynamics, of each agent is assumed

to be passive, integral action being a special case. Unlike [1], the actuation dynamics

is permitted to be nonlinear. Section 3.1 defines the system dynamics. Section 3.2

formally defines the problem and states the assumptions. Section 3.3 provides the

control law. Section 3.4 summarizes the contributions of this chapter.

3.1 System Model

We assume that there are n agents in the plane with position vector of the

i-th agent pi ∈ R2. We will call vi ∈ R2 the velocity vector for agent i. In particular

each agent obeys:

ṗi = vi. (3.1)

Equivalently, with p = [p>1 , p
>
2 , ..., p

>
n ]> ∈ R2n,

ṗ = v (3.2)

where v = [v>1 , v
>
2 , ..., v

>
n ]> ∈ R2n. We assume ui ∈ R2 as the control input to the

i-th agent, and that u = [u>1 , u
>
2 , ..., u

>
n ]> ∈ R2n. We also assume that the agents are
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homogeneous. Furthermore, with zi the state vector for the i-th agent, for suitable

functions f(., .) and h(., .), the ui to vi dynamics is given by:

żi = f(zi, ui), f(0, 0) = 0. (3.3)

vi = h(zi), h(0) = 0. (3.4)

We assume that this dynamics is passive. More precisely, in view of the dis-

cussion in Section 2.3, we make the following assumption.

Assumption 3.1. The state space representation in (3.3, 3.4) are such that there exists

a positive definite storage function S(·), such that for all i ∈ {1, · · · , n},

Ṡ(zi) ≤ uTi vi. (3.5)

We also make an observability and controllability assumption.

Assumption 3.2. In the state space representation in (3.3, 3.4) vi ≡ 0 implies zi ≡ 0.

Further zi ≡ 0 implies ui ≡ 0. Finally, zi is bounded if vi is bounded.

We contrast this system model with those of [1],[2] and [26], and argue that

all three are special cases. All three obey (3.2). In [26], vi = ui, which is trivially a

passive system. In [2], v̇i = ui, which is passive as
1

s
is PR. In [1] the transfer function

from ui to vi is LTI and PR and thus obeys Assumption 3.1.

3.2 Formation Specification and Control Objective

The desired rigid formation F (p̄, G) involves a rigid undirected graph G =

(V,E), with V = {1, · · · , n}. Define

dij = ‖pi − pj‖, ∀{i, j} ∈ E. (3.6)
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Define the vector D(p) ∈ R|E|+ , as

D(p) =
{
d2
ij

}
{i,j}∈E . (3.7)

The desired representation p = p̄ has the property that for every edge {i, j} ∈

E and desired distance d̄ij between i and j, p̄ obeys

d̄ij = ‖p̄i − p̄j‖, ∀ {i, j} ∈ E. (3.8)

Since rotating and translating a rigid formation does not change the intera-

gent distances, there exists a noncompact manifold of any member which is a valid

formation:

M(p̄) = {p | D(p) = D(p̄)}. (3.9)

More formally, the control objective is as follows. Call the set of neighbors of

i,

N (i) = {j|{i, j} ∈ E}. (3.10)

Define Pi ∈ R2|N (i)| to be the vector of position vectors of the neighbors of i, i.e.

Pi = {pj}j∈N (i) . (3.11)

Then the control goal is to choose ui : R→ R2 of the form

ui = f(Pi, vi) (3.12)

so that

lim
t→∞

p(t) ∈M(p̄), (3.13)
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or equivalently

lim
t→∞

D(p(t)) = D(p̄). (3.14)

This must be done under the following rigidity assumption.

Assumption 3.3. The rigidity matrix R(p̄) has rank greater or equal to 2n− 3.

A few remarks are in order. First, (3.12) sets the information exchange ar-

chitecture. To execute its control law, each agent can only use the positions of its

neighbors and its own velocity. This contrasts with [2] which additionally requires

all its neighbor’s velocities. Second, there is no unique p̄ to which convergence is

needed; rather, any member of the manifold M(p̄) suffices. However, we demand

that convergence be to a point in this manifold. Further, the fact that all elements of

this manifold suffice to meet the control goal, precludes global stability. This is also

the case with [1],[2] and [26].

3.3 The Control Algorithm

As in [1],[2] and [26], define the cost function

J(p) =
‖D(p)−D(p̄)‖2

4
. (3.15)

Clearly J(p) = 0 iff p ∈ S(p̄). Moreover, the gradient ∇J(p) can be written as

∇J(p) = R>(p)(D(p)−D(p̄)). (3.16)

Then the proposed control law for the nonlinear system is borrowed from [1] where

u = −v −R>(p)(D(p)−D(p̄)). (3.17)
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Also restated here from [1],

ui = −vi −
∑
j∈N(i)

(d2
ij − d̄2

ij)(pi − pj). (3.18)

Clearly, this law respects the form in (3.12).

3.4 Conclusion

In this chapter the formation architecture has been provided and the nonlinear

dynamics of the agents have been presented. We have specified a control objective and

enunciated a decentralized control law for meeting this objective. The next chapter

formally proves that the control law does indeed achieve the desired objective.
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CHAPTER 4
STABILITY ANALYSIS

Having presented the system model, the control objective and the control law

in the previous chapter, we now formally prove its local uniform asymptotic stability.

A key device to be used in our proof is Lasalle’s invariance principle, [42]. Thus, in

Section 4.1 we summarize the version of this principle with relevance to our proof.

In Section 4.2 we explain why the proof of [1] for the LTI case does not go through

here. Section 4.3 provides the formal proof; which, because of a redefinition of the

state space, turns out to be simpler than that in [1]. Section 4.4 is the conclusion for

this chapter.

4.1 Lasalle’s Invariance Principle

Lasalle’s invariance principle, also known as Lasalle’s theorem, is a powerful

stability analysis tool for time invariant systems of the form

ẋ = F (x). (4.1)

Note in particular, time dependence in the right hand side is not explicit. Depen-

dence on time only comes from the time dependence of x(·). Suppose the following

conditions are obtained.

(A) The state trajectories of (4.1) lie in a compact set.

(B) There is a function V (x) that is bounded from above and below.
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(C) Along the trajectories of (4.1),

V̇ (t) ≤ 0. (4.2)

Then all trajectories converge to the largest invariant set of (4.1) on which

V̇ (t) ≡ 0. (4.3)

Much effort in [1] is expended in proving (A); specifically, by first showing

that the centroid of the formations generated by the control law in [1] are bounded

and that the interagent distances are also bounded. Even though [26] uses center

manifold theory, it too relied on proving a priori that the centroid of the formation,

its law generates, is constant. As explained in Section 4.2, the nonlinear nature of

our setup makes proving the a priori boundedness of the centroid difficult. Instead

in Section 4.3 we use a redefined state space to circumvent this problem.

4.2 Departure from [1]

The device used in [1] to show (A) in Lasalle’s invariance principle heavily

relied on the agent dynamics being linear. In particular, the rigidity matrix R(p) has

the following property. With 1 the vector of all ones,

R(p)1 = 0. (4.4)

Thus from (3.17) one gets

1Tu = −1Tv. (4.5)

If, as is the case with [1], for each i the ui to vi relationship is LTI and passive then

so is the relationship from 1Tu to 1Tv. Consequently, (4.5) boils down to the closed
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loop relationship depicted as in Figure 4.1.

LTI

Passive
1>v

-

Figure 4.1: A closed loop used to show boundedness in [1].

Then as the forward path is passive and the reverse strictly passive, from the

passivity theorem [42], 1Tv asymptotically approaches zero. As the closed loop in

Figure 4.1 is LTI, this implies that 1Tv converges exponentially to zero. Because of

(3.2), this implies that the centroid of the formation

1Tv

n

is bounded.

This argument fails in our setup despite the fact that (4.5) still holds. This is

so, as in our case, the ui to vi blocks are nonlinear. Thus, their individual passivity

does not mean that the relationship from 1Tu to 1Tv is also passive. Further, for

a nonlinear system, asymptotic stability need not imply exponential stability. Thus,

from a priori it is difficult to conclude the boundedness of the centroid and hence the

conclusion of (A).
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4.3 Convergence Proof

We first begin with a redefinition of the state space. Consider the closed loop

comprising the equations (3.2-3.4) and (3.18). Observe, first that the closed loop is

time invariant. Further, beyond (3.2) the pi only appears in the form of its difference

with other position vectors, through (3.18). Thus, one can redefine the state space

as represented by a vector x that beyond the vi and zi comprises not of pi per se, but

rather pi−pj. The closed loop can then be expressed as in (4.1) for a suitably defined

F (·) whose precise form is immaterial. Thus, if one can show that vi, zi, and J(p)

defined in (3.15) is bounded, then x is bounded, i.e. the state space is compact. This

is so, as again, J(p) comprises of summands involving ‖pi−pj‖2. This key observation

permits us to avoid having to prove the a priori boundedness of the centroid, in order

to prove the compactness of the state space.

Indeed, in the sequel the role of V (·) in Section 4.1 will be played by the

Lyapunov like function:

L(p, z, v) = J(p) +

∫ t

t0

v>(τ)u(τ)dτ. (4.6)

Using this, we will prove the boundedness of J(p), v, and z and hence the compactness

of the redefined state space.

As a first step, we now establish that the integral in (4.6) is bounded from

below. Thus L̇(p, z, v) ≤ 0 will imply the boundedness of J(p).

Lemma 4.1. Consider (3.3,3.4) under Assumption 3.1. Then for every t0 and finite

zi(t0), the integral in (4.6) is bounded from below.
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Proof. Because of Assumption 3.1 there is a positive definite S(zi) such that (3.5)

holds. Thus, as S(zi(t)) ≥ 0 for all t0,

∫ t

t0

v>(τ)u(τ)dτ ≥ S(zi(t))− S(zi(t0))

≥ −S(zi(t0)). (4.7)

The result follows.

We now prove the uniform convergence of the ∇J(p) to zero.

Theorem 4.2. Consider the system described by (3.2-3.4) and (3.17). Suppose As-

sumptions 3.1-3.3 hold. Then all trajectories converge uniform asymptotically to the

set:

∇J(p) ≡ 0, v ≡ 0, and zi ≡ 0. (4.8)

Proof. As the closed loop is time invariant, asymptotic convergence must be uniform

with respect to the initial time. Observe, as in [1] that

L̇(p, z, v) = [∇J(p)]> ṗ+ v>u

= [∇J(p)]> v + v>u

= −‖v‖2

≤ 0. (4.9)

Thus L(p, z, v) is bounded from above. As J(p) ≥ 0, from Lemma 4.1, L(p, z, v) is

also bounded from below. Thus from (4.9) v is bounded and from Assumption 3.2,

the zi are bounded. Also J(p) is bounded. Thus, for all {i, j} ∈ E, ‖pi − pj‖ are
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bounded. As from Assumption 3.3 the formation is rigid, at one p, then at all p, the

formation is connected. Thus pi − pj are bounded for all i, j and the state vector x

comprising of pi − pj, v, and zi is bounded. As the closed loop can be written as in

(4.1); by Lasalle’s theorem, uniform asymptotic convergence to v ≡ 0 must occur.

From Assumption 3.2, this leads to u ≡ 0. From (3.17), this in turn implies that

∇J(p) ≡ 0.

Thus, uniform convergence occurs to a critical point of J(p). As at the limit

point v ≡ 0, convergence is to a point. As shown in [26] some of these critical points

may not correspond to the global minimum of J(·). Thus global convergence may

not be possible, though [29] did show that at least when the desired formation is a

K-4 rectangle, these false stationary points are unstable at least for the algorithm in

[26]. Whether that is the case here is an open issue. Nonetheless, all that Theorem

4.2 shows is convergence to a critical point and that global convergence to the global

minimum may not be possible. The next theorem does show that local convergence

is indeed guaranteed.

The proof of the theorem is identical to that in [1] but is repeated for the sake

of completeness.

Theorem 4.1. Under the conditions of Theorem 4.2, there is a neighborhood U(p̄) of

M(p̄) and a ball B(ε) = {zi|‖zi‖ ≤ ε} such that (3.13) holds for all p(t0) ∈ U(p̄) and

zi(t0) ∈ B(ε).

Proof. As the system is time invariant, we will assume that t0 = 0. Observe J(p) is

analytic. Thus the Lojasiewicz inequality, [46], shows that there is a neighborhood
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Ω(p̄) of M(p̄), and constants K > 0 and λ ∈ (0, 1) such that for all p ∈ Ω(p̄)

J(p) ≤ K‖∇J(p)‖λ. (4.10)

Thus, ∇J(p) = 0 implies J(p) = 0 for all p ∈ Ω(p̄).

Call ∂Ω(p̄) to be the boundary of Ω(p̄) and

J∗ = min
p∈∂Ω(p̄)

J(p). (4.11)

By continuity, there exists an ε and U(p̄) ⊂ Ω(p̄) such that for all zi(0) ∈ B(ε) and

p ∈ U(p̄), because of (4.7)

L(p, z, v) < J∗ −
n∑
i=1

S(zi(0)) and J(p) ≤ J∗. (4.12)

Choose, zi(0) ∈ B(ε) and p(0) ∈ U(p̄). As L(p, z, v) is non-increasing, for all t ≥ 0

there holds:

J∗ −
n∑
i=1

S(zi(0)) > L(p(t), z(t))

≥ J(p(t))−
n∑
i=1

S(zi(0))

Thus for all t ≥ 0, J(p(t)) < J∗. Because of (4.11) and continuity, p(t) ∈ Ω(p̄) for all

t ≥ 0. Thus the result holds from Theorem 4.2 and (4.10).

4.4 Conclusion

We have shown that despite nonlinearity manifest in the actuation dynamics,

the control law of [1], formulated for LTI dynamics, still works as long as the nonlinear

dynamics are passive. Further, the stability proof is in fact simpler than that in [1]

where we do not need to prove the boundedness of the centroid. The next chapter

provides simulations.
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CHAPTER 5
SIMULATIONS

This section presents some simulations. We assume that for each agent the

control input to velocity dynamics are decoupled in the two dimensions. For simplic-

ity, call the control input in a given direction to be w, the sate vector [η1, η2]T , and

the velocity y. Then the dynamics are given as

η̇1 = η2

η̇2 = −(1 + η2
1)η1 − η2 + w

y = η2.

(5.1)

This is in fact a mass-spring-dashpot system with a nonlinear spring.

We now show that this system is passive. Indeed choose:

S(η1, η2) =

∫ η1

0

(1 + s2)sds+
η2

2

2

Clearly this is positive definite. Further

Ṡ(η1, η2) = η̇1(1 + η2
1)η1 + η̇2η2

= η2(1 + η2
1)η1 + η2

(
−(1 + η2

1)η1 − η2 + w
)

= −η2
2 + η2w

≤ yw.

The formation is as in Figure 2.1a: the specified (a1, a3) and (a2, a4) edges are

of length five, (a1, a2) and (a3, a4) edges are of length four, and (a2, a3) and (a1, a4)

edges are of length three.



www.manaraa.com

30

In the first simulation, we set [a1 = (2, 2), a2 = (0, 4), a3 = (3, 4), a4 = (3, 0)]

as the initial (x, y) positions of the agents. The results are shown in Figure 5.1 and

5.2. From a qualitative perspective, the initial position of agent a1 has edge distances

shorter to its nearest neighbors than the specified length. Initially in Figure 5.2,

the agent’s position moves out towards the position (0, 0). As expected, the velocity

decreases over time as the error distances, as seen in Figure 5.1, between the agents’

actual and specified edge-lengths approaches zero.

In the second simulation, we consider the opposite scenario with the agents’

initial positions set at [a1 = (0, 0), a2 = (0, 4), a3 = (5, 5), a4 = (3, 0)]. In this case,

the agent a4 initial distances to its nearest neighbors are greater than the specified

edge-lengths. The results from Figure 5.3 and 5.4 show the change of velocity over

time mapped to the positions of the agents as the differences between actual and

specified edge-length distances decreases to zero. An interesting difference between

the first simulation and the second simulation is the rate of change on the agents

position. Intuitively, from (3.15) the cost function is based on the difference between

the edge-lengths squared. Thus, with the second simulation where the (a1, a3) edge-

length difference is much greater than in the first simulation, the velocity of the agents

seen in Figure 5.4 is also greater than that of Figure 5.2.

Finally, in the third simulation, we observe an initial formation where all four

agents’ neighboring edge-lengths differ from the specified formation’s edge-lengths.

The initial positions of the agents in Figure 5.6 are [a1 = (1, 2), a2 = (1, 4), a3 =

(2, 2), a4 = (2, 1)]. The results shown in Figure 5.5 and 5.6. Compared to the first
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simulation, we see similar motion trajectory dynamics as agent a1 except seen across

all four agents in the third simulation. Additionally, the final positions of the agents

exhibits the rotational ambiguity that exists with formation control.

To this end, we have shown through three simulations the results of the control

algorithm and the convergence to a specified formation. In the first simulation, we

show that an initial formation with smaller edge-length distances than the specified

formation converges to the desired formation. In the second simulation, an initial

formation with greater edge-length than the specified formation also converges to

the desired formation. Lastly, the final simulation starts with an initial formation

much smaller of agents’ neighboring distances than the specified formation, which

also converges to the desired formation.
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Figure 5.1: The individual edges of ‖D(p)−D(p̄)‖ for the case where D(p) at t = 0 is

derived from the initial positions of the agents at a1 = (2, 2), a2 = (0, 4), a3 = (3, 4),

and a4 = (3, 0) and D(p̄(t)∀t ≥ 0 can be represented by a graph: a1f = (0, 0),

a2f = (0, 4), a3f = (3, 4), and a4f = (3, 0)
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Figure 5.2: Agents trajectory in the xy-plane with initial positions a1 = (2, 2), a2 =

(0, 4), a3 = (3, 4), and a4 = (3, 0).
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Figure 5.3: The individual edges of ‖D(p)−D(p̄)‖ for the case where D(p) at t = 0 is

derived from the initial positions of the agents at a1 = (0, 0), a2 = (0, 4), a3 = (5, 5),

and a4 = (3, 0) and D(p̄) is the same as in Figure 5.1
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Figure 5.4: Agents trajectory in the xy-plane with initial positions a1 = (0, 0), a2 =

(0, 4), a3 = (5, 5), and a4 = (3, 0).
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Figure 5.5: The individual edges of ‖D(p)−D(p̄)‖ for the case where D(p) at t = 0 is

derived from the initial positions of the agents at a1 = (1, 2), a2 = (1, 4), a3 = (2, 2),

and a4 = (2, 1) and D(p̄) is the same as in Figure 5.1
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Figure 5.6: Agents trajectory in the xy-plane with initial positions a1 = (1, 2), a2 =

(1, 4), a3 = (2, 2), and a4 = (2, 1).
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CHAPTER 6
CONCLUSION

This thesis examined the decentralized formation shape control of a set of ho-

mogeneous agents in the plane whose control input to velocity dynamics are nonlinear

and passive. The formation shape is specified by a subset of interagent distances and

corresponds to a rigid formation. Each agent executes its control law by measuring

its relative positions from its neighbor and by knowing its absolute velocity. The

control law is the same as previously proposed for a network where the agents have

linear time invariant (LTI) passive dynamics. Despite the nonlinearity, we show local

convergence of this same law. The stability proof is in fact simpler than given in

the LTI case through a redefinition of the state space. The results are verified by

simulations where each agent’s control to velocity dynamics represents a mass spring

dashpot system with a nonlinear spring.

6.1 Future Work

There are several possible extensions to this work. First, global convergence is

to a critical point of a cost function, which may not correspond to a desired formation.

It was shown in [29] that, at least when the desired formation is a K-4 rectangle, all

false stationary points are in fact saddle points and that, at least for the algorithm

of [26], are locally unstable. In other words, the latter algorithm is for all practical

purposes globally stable for a desired formation that is a K-4 rectangle. Whether

that is also the case for the algorithm here is an open question.
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Second, we have assumed that all agents have identical dynamics. How must

one modify the control law to accommodate heterogeneous models is an open question.

Finally, is passivity really needed or can the condition be relaxed?
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